Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

Dinámica del consumo energético y electrificación en la comunidad rural El Macho

Dynamics of energy consumption and electrification in the rural community of El Macho

Rosabell Pérez Gutiérrez¹

https://orcid.org/0000-0002-2014-2351

Reineris Montero Laurencio²

https://orcid.org/0000-0003-0898-5011

Marcos Iriondo Pérez³

https://orcid.org/0000-0001-8575-6293

¹Oficina Técnica del Nodo de Centros de Innovación Territorial, España ²Universidad de Moa Doctor Antonio Núñez Jiménez, Holguín, Cuba ³Universidad de Sancti Spíritus José Martí Pérez, Sancti Spíritus, Cuba

<u>rosabellperez@citmitecociuden.es</u> <u>rmontero@ismm.edu.cu</u> <u>miriondo@uniss.edu.cu</u>

Artículo original

Resumen

Introducción: El análisis del consumo eléctrico y de las perspectivas de electrificación de la comunidad rural El Macho requiere un enfoque sistémico que articule dimensiones técnicas, sociales y territoriales. Ubicada en las estribaciones de la Sierra Maestra (provincia Santiago de Cuba), la localidad constituye un caso de estudio relevante por la coexistencia de un grupo electrógeno diésel de 45 kVA que alimenta una microrred comunitaria y un mosaico de sistemas fotovoltaicos aislados. Objetivo: Proponer alternativas que optimicen la toma de decisiones para la electrificación de comunidades rurales aisladas, empleando El Macho como estudio de caso. Métodos: Se aplicó una metodología mixta que integró cuestionarios estructurados, entrevistas semiestructuradas, observación participante, grupos de discusión y mapeo de actores. La triangulación de estas técnicas permitió validar la información y captar la complejidad sociotécnica del sistema energético local. Resultados: El diagnóstico evidenció una diversidad de formas de suministro con distintos niveles de eficiencia; deterioro de las redes de distribución y de las instalaciones eléctricas internas de las viviendas; y e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

fuertes condicionantes socioeconómicos que inciden en los patrones de consumo y en la aceptación de tecnologías renovables. Asimismo, se identificó una alta aceptación comunitaria de las soluciones fotovoltaicas y se esbozaron propuestas de electrificación alternativas con enfoque de equidad, integrando participación local y sostenibilidad. **Conclusiones**: Se delimitaron áreas críticas de intervención y se formularon estrategias de electrificación que integran inclusión, participación comunitaria y sostenibilidad. Estas propuestas ofrecen un marco operativo para reducir la vulnerabilidad energética de comunidades rurales aisladas en Cuba, contribuyendo a un desarrollo local más equitativo.

Palabras clave: comunidad rural aislada; consumo energético; electrificación rural; participación comunitaria

Abstract

Introduction: The analysis of electricity consumption and electrification prospects in the rural community of El Macho requires a systemic approach that articulates technical, social, and territorial dimensions. Located in the foothills of the Sierra Maestra (Santiago de Cuba province), the town constitutes a relevant case study due to the coexistence of a 45 kVA diesel generator that supplies a community microgrid and a mosaic of isolated photovoltaic systems (SPVS). Objective: To propose alternatives that optimize decision-making for the electrification of isolated rural communities, using El Macho as a case study. Methods: A mixed methodology was applied that integrated structured questionnaires, semi-structured interviews, participant observation, focus groups, and stakeholder mapping. The triangulation of these techniques allowed for the validation of information and the capture of the sociotechnical complexity of the local energy system. Results: The assessment revealed a variety of supply methods with varying efficiency levels; deterioration of distribution networks and internal electrical installations in homes; and strong socioeconomic factors that impact consumption patterns and the acceptance of renewable technologies. Furthermore, high community acceptance of photovoltaic solutions was identified, and alternative electrification proposals were outlined with an equity focus, integrating local participation and sustainability. Conclusions: Critical areas of intervention were defined, and electrification strategies that integrate inclusion, community participation, and sustainability were formulated. These

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

e8937

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

proposals offer an operational framework for reducing the energy vulnerability of isolated rural communities in Cuba, contributing to more equitable local development.

Keywords: community participation; energy consumption; isolated rural community; rural electrification

Introducción

La carencia de acceso a servicios energéticos adecuados define la denominada pobreza energética, una condición que limita las oportunidades de desarrollo y bienestar de las comunidades (Ibañez et al., 2020). Numerosas actividades económicas y sociales dependen de la disponibilidad de energía moderna; por ello, mejorar el acceso energético resulta vital para la reducción de la pobreza y el desarrollo humano. Entre las fuentes sostenibles de generación eléctrica, la energía solar fotovoltaica se ha consolidado en años recientes como una de las alternativas más promisorias, al ser limpia, renovable y cada vez más competitiva (Stolik, 2014).

El acceso universal a la energía figura como un objetivo esencial del desarrollo sostenible, incorporado por la Organización de las Naciones Unidas en la Agenda 2030 mediante el Objetivo de Desarrollo Sostenible (ODS) 7, definido como "garantizar el acceso a una energía asequible, segura, sostenible y moderna para todos" (ONU, 2015). No obstante, persisten brechas significativas: de mantenerse el ritmo de progreso actual, alrededor de 660 millones de personas en el mundo carecerán de electricidad en 2030, concentrándose la mayoría en zonas rurales aisladas de países en desarrollo (IEA, IRENA, UNSD, World Bank y WHO, 2023).

En Cuba, las comunidades rurales aisladas enfrentan limitaciones severas en el suministro eléctrico. Por lo general, el acceso se garantiza mediante pequeños sistemas diésel que operan apenas unas pocas horas al día (aproximadamente cuatro horas nocturnas) debido a la escasez de combustible y al mantenimiento limitado. Las soluciones tecnológicas para llevar energía a estas comunidades no constituyen únicamente un asunto técnico, sino que conllevan importantes implicaciones sociales: deben contribuir a reducir desigualdades, mejorar la resiliencia local y elevar las condiciones de vida de la población (Govetto *et al.*, 2024).

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

Diversos estudios destacan que la electrificación rural debe abordarse desde una perspectiva integral de sostenibilidad, integrando las dimensiones ambiental, económica y social. Por ejemplo, investigaciones en América Latina subrayan la importancia de enfoques participativos e intersectoriales para el éxito de los proyectos de electrificación rural (Belmonte *et al.*, 2015; Ochoa Ochoa *et al.*, 2022; Mera y Rodríguez, 2024; Nolasco y Gomis, 2021; Ottavianelli *et al.*, 2021; Govetto et al., 2024; Echeverría *et al.*, 2022). En esta línea, el caso de El Macho, una comunidad rural dispersa del oriente cubano, ubicada en el macizo montañoso de la Sierra Maestra, representa un ejemplo paradigmático de semi-aislamiento energético.

La comunidad El Macho, ubicada en una zona montañosa de difícil acceso, no está conectada al sistema eléctrico nacional. Hasta 2019, la electricidad provenía únicamente de pequeños sistemas fotovoltaicos individuales instalados por el Estado, con capacidad muy limitada. Ese año se incorporó un grupo electrógeno diésel de 45 kVA que alimenta una microrred en el centro del poblado, pero su operación se restringe a aproximadamente 4 horas diarias en horario nocturno debido a limitaciones de combustible. Fuera de ese horario, las viviendas dependen de sus paneles solares individuales o permanecen sin suministro eléctrico.

Ante este escenario, se realizó un diagnóstico participativo en el marco del proyecto "Fuentes Renovables de Energía como apoyo al Desarrollo Local" (FRE Local), empleando metodologías que promueven la participación activa de los actores locales y la apropiación comunitaria de las tecnologías. Esta intervención permitió recopilar información detallada sobre las necesidades energéticas, los recursos disponibles y las condiciones técnicas del entorno, con el fin de orientar decisiones informadas que articulan soluciones energéticas sostenibles, equitativas y contextualizadas al territorio.

De este modo, el presente trabajo sistematiza la información sobre las necesidades y recursos energéticos de una comunidad rural aislada, estableciendo un método para identificar las mejores variantes de electrificación en función de los recursos disponibles y con criterios de sostenibilidad. Conforme a ello, el objetivo de la

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

investigación es proponer alternativas de electrificación rural equitativas y sostenibles para comunidades aisladas, utilizando El Macho como estudio de caso.

Materiales y Métodos

Se implementó un estudio de caso integral en El Macho con enfoque cualitativo-participativo y métodos mixtos. La población (175 habitantes en 70 viviendas) permitió cobertura censal de las técnicas aplicadas. Se caracterizaron 70 viviendas —41 en el núcleo y 29 dispersas— y una red de distribución artesanal derivada de un grupo electrógeno, con postes improvisados y conductores heterogéneos que generan elevadas pérdidas y conexiones precarias; solo el 6 % dispone de interruptor general. La georreferenciación de viviendas y equipamientos (escuela, consultorio) y la medición de distancias se realizaron con *Google Earth Pro* (Google LLC, 2021), complementadas con observación *in situ* y verificación topográfica de accesos.

La investigación en El Macho se basó en la metodología participativa desarrollada por el proyecto FRE Local, adaptada al contexto específico de la comunidad, y se estructuró en cuatro etapas: diagnóstico participativo, identificación de soluciones tecnológicas, implementación piloto y seguimiento/evaluación. En la fase diagnóstica se aplicó una estrategia de triangulación metodológica para asegurar la validez de los datos, combinando diversas técnicas: análisis documental, cuestionarios estructurados aplicados a todas las familias e informantes clave, entrevistas semiestructuradas a actores relevantes, grupos de discusión con residentes, observación participante y mapeo de actores.

Se emplearon dos cuestionarios específicos para recabar información a nivel comunitario y familiar sobre infraestructura, consumo energético y organización social. Ambos instrumentos fueron validados mediante juicio de expertos y prueba piloto, alcanzando una consistencia interna aceptable (Alfa de Cronbach = 0,78). La aplicación de los cuestionarios a todos los 175 residentes mayores de 15 años fue factible gracias al tamaño reducido de la población. Los datos cuantitativos se procesaron con el software *SPSS* (v.25) para obtener distribuciones de frecuencia, correlaciones e inferencias básicas, mientras que la información cualitativa (entrevistas, notas de campo, discusiones grupales) fue analizada temáticamente con

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

el software *NVivo* (v.12). Este enfoque mixto permitió identificar patrones y construir una comprensión integral de la realidad energética local.

El proceso incluyó una validación participativa de los hallazgos mediante la retroalimentación de los resultados en la propia comunidad, lo cual fortaleció la confiabilidad de las conclusiones. Además, se contó con el apoyo técnico de la empresa eléctrica nacional (UNE) y del Centro de Estudio de Energía y Procesos Industriales (CEEPI) en el marco del Proyecto FRE Local (2020), respaldado por el Programa de las Naciones Unidas para el Desarrollo (PNUD) y la Unión Europea. Esta colaboración aseguró la incorporación de estándares técnicos y normativas vigentes en Cuba. En conjunto, la combinación de datos cuantitativos y cualitativos proporcionó una visión holística de la problemática energética en El Macho, integrando variables técnicas con dimensiones sociales y culturales, en línea con un enfoque integral de electrificación rural sostenible.

Resultados y Discusión

El grupo electrógeno diésel de 45 kVA que abastece a El Macho fue instalado en una ubicación central y opera aproximadamente 4 horas diarias en horario nocturno. Se trata de un equipo Denyo (instalado en 2019) que recibe mantenimiento básico regular y se alimenta mediante entregas periódicas de diésel, acumulado en un tanque externo de aproximadamente 1000 litros. La demanda simultánea durante su funcionamiento se estima en 24 kW, calculada a partir de una carga total instalada de ~60 kW y un coeficiente de simultaneidad de 0,4. Esta cifra podría subestimar la realidad, debido a la coexistencia de sistemas solares en algunas viviendas que alivian la carga nocturna. Actualmente, el 79,4 % de los hogares se conecta a la microrred diésel (algunos complementando con energía solar), el 18 % depende exclusivamente de sistemas fotovoltaicos aislados (SFVA), y alrededor de un 3 % no cuenta con acceso eléctrico alguno.

El estado de la red de distribución eléctrica en El Macho es desigual. En el núcleo central, que abarca aproximadamente el 59 % de las viviendas, las líneas se encuentran en condiciones aceptables. Sin embargo, en zonas periféricas (16 % de las viviendas) la infraestructura es deficiente: se utilizan empalmes rudimentarios,

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

conductores de calibres variados y soportes inestables, lo que genera caídas de tensión perceptibles. Esto se refleja en la percepción de los usuarios: mientras el 66 % considera "buena" la estabilidad del voltaje, un 19 % la califica como "regular" o "mala", coincidiendo estas opiniones con las áreas de red más deterioradas.

Asimismo, las instalaciones eléctricas internas de las viviendas resultan precarias. Solo el 32 % de las viviendas presenta un cableado en buen estado, y la mayoría carece de protección básica (como breakers o interruptores generales), recurriendo en muchos casos a extensiones o conexiones informales y potencialmente peligrosas. Estas condiciones evidencian la necesidad urgente de rehabilitar tanto la red comunitaria como las instalaciones domiciliarias, para garantizar la seguridad eléctrica y mejorar la eficiencia del sistema.

Sin embargo, la falta de mantenimiento y la sustitución de componentes con recursos locales han derivado en una notable heterogeneidad: se encontraron viviendas con su kit fotovoltaico original completo y en buen estado, otras con el panel conectado directamente a baterías automotrices recicladas (sin regulador ni inversor), y algunos casos en que el sistema original estaba fuera de servicio por baterías agotadas. Muchos de estos sistemas fueron instalados años atrás mediante programas sociales, consistiendo típicamente en un panel solar de ~120 Wp con un controlador de carga, una batería de ciclo profundo (usualmente 12 V, 100 Ah) y un inversor para entregar corriente alterna limitada.

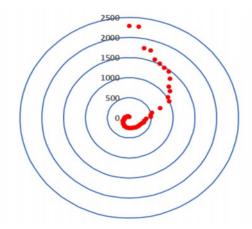
Prácticamente la totalidad de los SFVA inspeccionados presentaba baterías sulfatadas o con capacidad muy reducida, reflejando la ausencia de recambios periódicos. Asimismo, solo en unas pocas viviendas los paneles estaban ubicados en estructuras óptimas; en la mayoría, la posición e inclinación no eran las ideales debido a la disponibilidad limitada de espacio y a la presencia de sombras proyectadas por árboles cercanos.

En la comunidad, el **73** % de las viviendas se ubica a menos de 500 m del generador, un 18 % entre 500–1500 m, y solo un 6 % entre 1500–2500 m. Este patrón de asentamiento relativamente concentrado (**véase Figura 1**) sugiere que una solución de generación centralizada podría ser viable para la mayor parte de la

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.


URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

comunidad, optimizando el uso de materiales en la ampliación o mejora de la red de distribución existente.

Figura 1

Distancia lineal de las viviendas y dependencias hasta el grupo electrógeno.

Nota. Fuente: Base de datos del Proyecto FRE Local.

En la Figura 2 se observa la cercanía de muchas viviendas entre sí y la falta de espacio abierto en sus inmediaciones, debido a la densidad del bosque y a la accidentada orografía. La implementación masiva de paneles fotovoltaicos individuales para cada vivienda requeriría áreas libres de sombra que no siempre están disponibles; además, la tala de árboles para evitar sombras tendría un impacto ambiental negativo en la comunidad.

Figura 2

Vista aérea de las viviendas en el centro de la comunidad.

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

Nota: Fuente: Base de datos del Proyecto FRE Local y Google Earth.

El análisis de los electrodomésticos disponibles reveló que, si bien la mayoría de los hogares posee algunos equipos básicos, el uso efectivo de los mismos está muy limitado por la escasez de horas con electricidad. Por ejemplo, 100 % de los encuestados dispone de al menos una bombilla eléctrica en su vivienda, pero solo un 30 % cuenta con refrigerador. Asimismo, muchos hogares poseen pequeños electrodomésticos (ventilador, televisor, licuadora), aunque los emplean de forma esporádica debido a las restricciones energéticas.

En la Figura 3 se resume la distribución de la potencia eléctrica instalada por vivienda en orden descendente. Se observa que 21 viviendas (30 % del total) concentran alrededor del 80 % de la carga instalada de la comunidad (aproximadamente 60 kW sumando todas las cargas), mientras que las 49 viviendas restantes acumulan solo el 20 % de la carga. Esto indica una gran heterogeneidad en el potencial de consumo entre hogares: algunos disponen de varios equipos eléctricos (ej. casas con refrigerador, televisores, múltiples luces), frente a otros con equipamiento muy básico.

Este fenómeno de concentración de la demanda es consistente con hallazgos en otros contextos rurales latinoamericanos, donde un pequeño porcentaje de hogares

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

explica la mayor parte del consumo residencial. Estudios recientes reportan altos niveles de heterogeneidad en el consumo eléctrico doméstico, reforzando la necesidad de estrategias focalizadas (Parra Jácome et al., 2024). La demanda pico comunitaria (~24 kW) se alcanza precisamente por el aporte de esos hogares de mayor consumo simultáneo. Aun así, la curva de carga actual está fuertemente aplanada debido a la falta de servicio continuo 24 horas, lo que sugiere que la demanda podría aumentar notablemente si se garantizara un suministro permanente.

Figura 3

Potencia acumulada por vivienda (puntos rojos) y porcentaje comunitario (puntos verdes).

Nota. Fuente: Base de datos del Proyecto FRE Local.

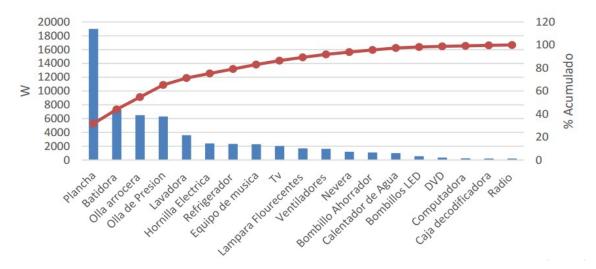
El análisis detallado del consumo eléctrico en El Macho revela un patrón tipo Pareto: aproximadamente el 30 % de las viviendas concentra cerca del 80 % de la carga total instalada. Esto indica que focalizar las intervenciones en los hogares de mayor consumo permitiría lograr reducciones significativas en la vulnerabilidad energética. A nivel comunitario se identificaron 295 dispositivos o artefactos eléctricos en total, predominando equipos de climatización e iluminación.

La Figura 4 presenta la distribución de la potencia instalada por tipo de equipo eléctrico en la comunidad. Se observa que las principales cargas corresponden a planchas eléctricas (32,15 % de la potencia total), batidoras/licuadoras (14,44 %), ollas arroceras (11,0 %) y ollas de presión eléctricas (10,66 %), que en conjunto

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.


URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

representan alrededor del 80 % de la potencia instalada. La notable presencia de equipos de cocción eléctricos sugiere una voluntad de sustituir combustibles tradicionales (leña, carbón) por electricidad, opción que solo será viable si se asegura un abastecimiento energético continuo y adecuado.

Figura 4

Potencia por tipo de equipo (barras azules) y porcentaje acumulado total (línea roja).

Fuente: Base de datos del Proyecto FRE Local.

A pesar de las limitaciones de los sistemas fotovoltaicos aislados actuales, el 84,5 % de las familias encuestadas manifestó preferir mejoras en el servicio mediante tecnología solar antes que depender más del diésel, valorando la mayor confiabilidad diurna de la energía fotovoltaica frente a las frecuentes interrupciones del grupo electrógeno por falta de combustible. Este respaldo social es un factor clave para la implementación de proyectos fotovoltaicos en la comunidad, coincidiendo con otras experiencias donde la participación y aceptación local han determinado el éxito de las iniciativas de energía renovable (Govetto *et al.*, 2024).

Frente a este escenario, se propone una estrategia de transición energética centrada en dos líneas de acción complementarias: (1) rehabilitación de los sistemas fotovoltaicos existentes (≈0,5 kWp por vivienda) mediante la sustitución de baterías degradadas, mejora del cableado e incorporación de controladores modernos; y (2)

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

implementación de nuevos sistemas solares de ~2,2 kWp con almacenamiento (≥10 kWh), compartidos entre 2 a 4 viviendas de baja demanda (≤1 kW), aprovechando su cercanía física y similitudes en los patrones de consumo. Este modelo de microrredes solares contribuye significativamente al desarrollo socioeconómico de un territorio, mejora las condiciones de vida de la población con impactos en la salud y la seguridad alimentaria (Tamasiga *et al.*, 2024).

La propuesta para la electrificación de El Macho contempla adaptar las soluciones técnicas a las condiciones reales del territorio. Para las viviendas sin espacio suficiente, se recomienda instalar sistemas fotovoltaicos más pequeños (300–500 W) o integrarlos en sistemas solares compartidos, utilizando techos y patios colectivos para optimizar el espacio, reducir sombras y facilitar el mantenimiento. Esta configuración permite planificar futuras interconexiones en baja tensión entre viviendas cercanas, sentando las bases para la eventual creación de una microrred comunitaria interconectada. La creación de un *Comité Energético Local* y de un programa de formación para operadores comunitarios fortalecerán la sostenibilidad a largo plazo, la autonomía tecnológica y la apropiación social del sistema.

Apostar a una transición energética en vínculo con las agendas políticas de los gobiernos parte de situar a las personas en el centro de los debates y a las comunidades como eje fundamental en la toma de decisiones (Pérez, 2024). En conjunto, la propuesta articula criterios técnicos, sociales y ambientales en una estrategia de transición energética justa, escalable y replicable para comunidades rurales aisladas, basada en la eficiencia, la equidad y el empoderamiento local.

Conclusiones

El diagnóstico sociotécnico realizado en El Macho confirma que la electrificación constituye un eje estratégico para el desarrollo local, al impactar directamente en la calidad de vida de la población y en la dinamización de actividades productivas y servicios sociales. Entre las principales conclusiones, destaca que la energía solar fotovoltaica –respaldada por una irradiación media anual de aproximadamente 1500 kWh/m² y una disposición relativamente concentrada de las viviendas– representa la

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

opción técnica y económicamente más viable, frente a otras fuentes renovables o fósiles cuya factibilidad resultó muy limitada en este contexto.

La propuesta central contempla instalar sistemas fotovoltaicos de ~2,2 kWp con almacenamiento (≥10 kWh), compartidos entre 2 a 4 viviendas de baja demanda (≤1 kW). Esta solución reduce costos, simplifica la instalación y fomenta la cooperación comunitaria en la gestión energética. Los paneles se ubican en espacios comunes (ej. techos de escuelas, terrazas, patios), minimizando sombras y facilitando un diseño en clústeres que habilite, a futuro, la creación de microrredes locales interconectadas en baja tensión.

La combinación de generación solar distribuida, respaldo híbrido y participación comunitaria ofrece una ruta sólida hacia la autosuficiencia energética de El Macho. Este modelo, replicable en otras zonas rurales aisladas de Cuba, no solo mejora las condiciones de vida, sino que promueve una transición energética justa, equitativa y sostenible, reduciendo desigualdades territoriales y empoderando a las comunidades en la gestión de sus propios recursos.

Referencias Bibliográficas

- Belmonte, S., Escalante, K. N. y Franco, J. (2015). Shaping changes through participatory processes: local development and renewable energy in rural habitats. *Renewable and Sustainable Energy Reviews, 45*, 278-289.
- Echeverría Gómez, M. del C., Pérez Gutiérrez, R., Medina Echeverría, A. **y** Barrera Cardoso, E. (2022). Metodología de intervención social: una herramienta de gestión de las fuentes renovables de energía en comunidades rurales. *Energía y Tú*, 97(1), 33-38.
- Google LLC. (2021). *Google Earth Pro* (versión 7.3.3) [Software]. Google LLC, California, USA.
- Govetto, S. C., González, F., Vilte, G. y Cornu, C. (2024). Transición energética en comunidades indígenas rurales aisladas: sentidos en torno al acceso a la energía en El Sunchal (Salta, Argentina) a partir del programa PERMER. *Hábitat y Sociedad,* 17(1), 115-132.

https://doi.org/10.12795/HabitatySociedad.2024.i17.06

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

- Ibañez Martín, M., Guzowski, C. y Maidana, F. (2020). Pobreza energética y exclusión en Argentina: mercados rurales dispersos y el programa PERMER. *Reflexiones*, 99(1), 40-71. https://doi.org/10.15517/rr.v99i1.35971
- IEA, IRENA, UNSD, World Bank y WHO. (2023). *Tracking SDG 7: The Energy Progress Report*. Washington DC: World Bank. https://trackingsdg7.esmap.org
- Mera Bravo, J. P. y Rodríguez Gámez, M. (2024). Factibilidad para la electrificación rural con tecnología fotovoltaica. *593 Digital Publisher CEIT*, *9*(3), 1139-1153. https://doi.org/10.33386/593dp.2024.3.2490
- Nolasco Benítez, E. y Gomis Bellmunt, O. (2021). Acceso a la electricidad y desarrollo rural. *CienciAmérica, 10* (3), 281-295. http://dx.doi.org/10.33210/ca.v10i3.371
- Ochoa Ochoa, D., Ochoa Malheber, C. **y** Ochoa Ochoa, S. (2022). Electrificación por microrredes en zonas rurales de la provincia del Azuay, Ecuador. *Memoria Investigaciones en Ingeniería*, 23, 65-74. https://doi.org/10.36561/ING.23.6
- ONU (Organización de las Naciones Unidas). (2015). Resolución 70/1 de la Asamblea General: Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Nueva York: Naciones Unidas.
- Ottavianelli, E., González, G. y Cadena, C. (2021). Hábitat y pobreza energética en zonas rurales aisladas en el noroeste argentino. *Ciencia Latina*, *5*(5), 7998-8018. https://doi.org/10.37811/cl_rcm.v5i5.886
- Parra Jácome, R. M., Yánez Jácome, G. B., Pinto Arteaga, G. R. **y** Rea Toapanta, A. R. (2024). Consumos heterogéneos de energía en las tipologías de hogares del sector residencial del Ecuador. *FIGEMPA: Investigación y Desarrollo, 17*(1), 102-111. https://doi.org/10.29166/revfig.v17i1.6104
- Pérez Gutiérrez, R. (2024). San Narciso (Cuba), por un desarrollo local con apoyo de las fuentes renovables de energía. *TERRA: Revista de Desarrollo Local, 14*, 120-136. https://doi.org/10.7203/terra.14.27699
- Proyecto FRE Local. (2020). Informe técnico del proyecto "Fuentes Renovables de Energía como apoyo al Desarrollo Local". Programa de Naciones Unidas para el Desarrollo (PNUD) Unión Europea.

e8937

Cite este artículo como:

Pérez Gutiérrez, R., Montero Laurencio, R. y Iriondo Pérez, M. (2025). Dinámica del consumo energético y electrificación en la comunidad rural El Macho. *Universidad & ciencia*, 14(3), e9837.

URL: https://revistas.unica.cu/index.php/uciencia/article/view/8937

Vol.14, No. 3, septiembre-diciembre, (2025) ISSN: 2227-2690 RNPS: 2450 Universidad de Ciego de Ávila, Cuba

https://mptf.undp.org/sites/default/files/documents/40000/primer_informe_de_sit_uacion_ip_ee-fre_local.pdf

Stolik Novygrod, D. (2014). La energía fotovoltaica: oportunidad y necesidad para Cuba. *Economía y Desarrollo*, 152(2), 69-86. http://scielo.sld.cu/scielo.php? script=sci arttext&pid=S0252-85842014000200005

Tamasiga, P., Onyeaka, H., Altaghlibi, M., Bakwena, M. y Ouassou, E. (2024). Empowering communities beyond wires: Renewable energy microgrids and the impacts on energy poverty and socio-economic outcomes. *Energy Reports*, 12, 4475-4488. https://doi.org/10.1016/j.egyr.2024.10.026

Conflicto de interés

Los autores no declaran conflictos de intereses.

Esta obra está bajo una licencia internacional <u>Creative Commons Atribución-NoComercial-CompartirIgual 4.0</u>. Se permite su copia y distribución por cualquier medio siempre que mantenga el reconocimiento de sus autores, no haga uso comercial de los contenidos y no realice modificación de la misma.