El contexto educativo 2.0 de la Inteligencia Artificial como actividad sistémica; caso del Análisis Matemático

Autores/as

DOI:

https://doi.org/10.5281/zenodo.18035552

Palabras clave:

digitalización, educación, inteligencia artificial, internet, matemáticas

Resumen

En este artículo se denota que el contexto educativo, dentro del ámbito universitario, es el punto de partida 2.0. Tanto cuanto, la tecnología delimite preceptos dentro de la sociedad académica actual y los paradigmas culturales sean cambiantes dentro del universo pedagógico. Por ende, es plausible el aporte educacional que ofrece la Inteligencia Artificial dentro de la academia; auxiliando a todo estudiante que necesite de información y no sea divisoria con el proceso del Big Data. Obviamente, que la interactividad de la Masificación Tecnológica Digital acompañe. Para lo cual, el Análisis Matemático, como actividad sistémica, no sea descartable y sea una garantía para el proceso de la enseñanza-aprendizaje; Mucho más, si, de manera inteligente, se trabaja en el entorno virtual y se lo aplica en plataformas sutiles; caso Wolfram Alpha. Entonces, es cuando la escritura tipográfica colaborativa, en composición de textos tipo LaTeX, se hace presente y redimensiona a la Educación Superior.

Citas

AL-Nuaimi, M. N. (2024). Human and contextual factors influencing cyber-security in organizations, and implications for higher education institutions: a systematic review. In Global Knowledge, Memory and Communication (Vol. 73, Issues 1–2). 91-98. https://doi.org/10.1108/GKMC-12-2021-0209

Alowais, M., Rudd, G., Besa, V., Nazar, H., Shah, T., & Tolley, C. (2024). Digital literacy in undergraduate pharmacy education: a scoping review. In Journal of the American Medical Informatics Association (Vol. 31). 732-745. https://doi.org/10.1093/jamia/ocad223

Aniswita, Fauzan, A., & Armiati. (2023). Students’ conceptual and procedural knowledge on integration: Reflections on calculus learning. AIP Conference Proceedings, 2698. 69-78. https://doi.org/10.1063/5.0122392

Bourechak, A., Zedadra, O., Kouahla, M. N., Guerrieri, A., Seridi, H., & Fortino, G. (2023). At the Confluence of Artificial Intelligence and Edge Computing in IoT-Based Applications: A Review and New Perspectives. In Sensors (Vol. 23, Issue 3). 2-49. https://doi.org/10.3390/s23031639

Hackett, S., Janssen, J., Beach, P., Perreault, M., Beelen, J., & van Tartwijk, J. (2023). The effectiveness of Collaborative Online International Learning (COIL) on intercultural competence development in higher education. International Journal of Educational Technology in Higher Education, 20. 2-21. https://doi.org/10.1186/s41239-022-00373-3

Kauffman, J. M., Badar, J., Wiley, A. L., Anastasiou, D., & Koran, J. (2024). Uncertainty in Education: Policy Implications. Journal of Education, 204(1), 203-210. https://doi.org/10.1177/00220574221090283

Lehmann, T. H. (2024). Learning to measure the area of circles. Research in Mathematics Education. 1-27. https://doi.org/10.1080/14794802.2024.2304329

Lesage, J., Brennan, R., Eaton, S. E., Moya, B., McDermott, B., Wiens, J., & Herrero, K. (2024). Exploring natural language processing in mechanical engineering education: Implications for academic integrity. International Journal of Mechanical Engineering Education, 52(1). 88-105. https://doi.org/10.1177/03064190231166665

Orakcı, Ş., & Gelişli, Y. (2024). Technology Integration in Higher Education. 15-21. https://doi.org/10.4018/979-8-3693-4103-2.ch003

Rani, S., Bhambri, P., & Kataria, A. (2023). Integration of IoT, Big Data, and Cloud Computing Technologies: Trend of the Era. In Big Data, Cloud Computing and IoT: Tools and Applications. 1-21. https://doi.org/10.1201/9781003298335-1

Sadek, L., & Sami Bataineh, A. (2024). The general Bernstein function: Application to χ-fractional differential equations. Mathematical Methods in the Applied Sciences, 47(7). 6117–6142. https://doi.org/10.1002/mma.9910

Saha, S., Park, C., Knapik, S., Guo, J., Huang, O., & Liu, W. K. (2023). Deep Learning Discrete Calculus (DLDC): a family of discrete numerical methods by universal approximation for STEM education to frontier research. Computational Mechanics, 72(2). 311–331. https://doi.org/10.1007/s00466-023-02292-0

Song, B., & Qiu, R. (2024). The Influence of Digital Virtual Technology on Contemporary College Students’ Ideological and Political Education. IEEE Access. 1-9. https://doi.org/10.1109/ACCESS.2020.3020167

Trevisan, A. L., de Oliveira Araman, E. M., & de Lurdes Serrazina, M. (2023). The development of students’ mathematical reasoning in Calculus courses. Avances de Investigacion En Educacion Matematica, 24. 39-56. https://doi.org/10.35763/aiem24.4326

Visvalingam, S., McHardy, H. L., Norder, S. J., Magson, N. R., & Norberg, M. M. (2023). A mixed methods study of an online intervention to reduce perfectionism. Current Psychology, 42(22). 18686-18701. https://doi.org/10.1007/s12144-022-02953-y

Yigitcanlar, T., Downie, A. T., Mathews, S., Fatima, S., MacPherson, J., Behara, K. N. S., & Paz, A. (2024). Digital technologies of transportation-related communication: Review and the state-of-the-art. Transportation Research Interdisciplinary Perspectives, 23. 165-171. https://doi.org/10.1016/j.trip.2023.100987

Publicado

2025-12-26

Cómo citar

Basantes-Valverde, W., Astudillo-Condo, D., & Tixi-Gallegos, K. (2025). El contexto educativo 2.0 de la Inteligencia Artificial como actividad sistémica; caso del Análisis Matemático. Educación Y Sociedad, 23(3), 169–181. https://doi.org/10.5281/zenodo.18035552