Use of hydroenergy resources in hydrographic basins
DOI:
https://doi.org/10.5281/zenodo.18225259Keywords:
environmental impacts, hydropower, water resourcesAbstract
Introduction: Hydropower, which accounts for 16 % of global electricity generation, is a key renewable energy source. Its utilization depends on river basins but faces challenges such as climate variability, water competition, and environmental and social impacts. Objective: To analyze the fundamental aspects of harnessing hydroenergy resources in river basins for local development, integrating technical and environmental considerations, as well as the effects of climate change. Method: Methodologies were used to estimate water balance, flow rate, head, and turbine efficiency. Environmental impacts were assessed, taking into account community participation. Results: Hydropower potential depends on factors such as topography, flow rate, and precipitation. In the Chambas Basin, the evaluated turbine showed an efficiency of over 90 % for half of the year, reducing CO₂ emissions. However, climate change alters precipitation and temperature patterns, affecting water availability and energy generation. Conclusion: Sustainable management of water resources and hydropower requires an integrated approach that considers water availability, flow rate, hydropower potential, and the impacts of climate change. Adaptation and mitigation strategies are essential to ensure the sustainability of this renewable energy source.
Downloads
References
Allen, R. G., Pereira, L. S., Raes, D. y Smith, M. (2018). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO. https://www.fao.org/3/x0490e/x0490e00.htm
Barros, V., Boninsegna, J. A., Camilloni, I. A., Chidiak, M., Magrín, G. O. y Rusticucci, M. (2020). Climate change in South America: Impacts and adaptation strategies. Journal of South American Earth Sciences, 102, 102679. https://doi.org/10.1016/j.jsames.2020.102679
Chow, V. T., Maidment, D. R. y Mays, L. W. (2018). Applied Hydrology. McGraw-Hill
Grill, G., Lehner, B., Lumsdon, A. E., MacDonald, G. K., Zarfl, C. y Liermann, C. R. (2019). An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, 14(8), 084018. https://doi.org/10.1088/1748-9326/ab25e9
Hamududu, B. y Killingtveit, A. (2016). Hydropower production in future climate scenarios: The case for the Zambezi River. Energy Procedia, 97, 8-15. https://doi.org/10.1016/j.egypro.2016.10.003
Intergovernmental Panel on Climate Change (IPCC). (2021). Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/
International Energy Agency (IEA). (2021). Hydropower Special Market Report. https://www.iea.org/reports/hydropower-special-market-report
Jong, P. de, Barreto, T. B., Tanajura, C. A. S., Kouloukoui, D., Oliveira-Esquerre, K. P., Kiperstok, A. y Torres, E. A. (2018). The impact of climate change on hydroelectric generation in South America. Renewable and Sustainable Energy Reviews, 82, 2327-2341. https://doi.org/10.1016/j.rser.2017.08.063
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., ... y Wisser, D. (2017). High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 15(2), 84-91. https://doi.org/10.1002/fee.1448
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., ... y Wisser, D. (2019). High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 17(6), 326-333. https://doi.org/10.1002/fee.2056
Paish, O. (2002). Small hydro power: Technology and current status. Renewable and Sustainable Energy Reviews, 6(6), 537-556. https://doi.org/10.1016/S1364-0321(02)00006-0
Poff, N. L., Brown, C. M., Grantham, T. E., Matthews, J. H., Palmer, M. A., Spence, C. M., ... y Wilby, R. L. (2015). Sustainable water management under future uncertainty with eco-engineering decision scaling. Nature Climate Change, 6(1), 25-34. https://doi.org/10.1038/nclimate2765
Quirós Martín, N., Brown Manrique, O., Sánchez Monteserín, C. M. y López Silva, M. (2024). Evaluation of hydrological factors of the Chambas Basin for hydroenergy and agricultural use. Revista Ciencias Técnicas Agropecuarias, 33(4), 1-7.
Turner, S. W. D., Ng, J. Y. y Galelli, S. (2017). Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Science of the Total Environment, 590-591, 663-675. https://doi.org/10.1016/j.scitotenv.2017.03.022
Udall, B. y Overpeck, J. (2017). The twenty-first century Colorado River hot drought and implications for the future. Water Resources Research, 53(3), 2404-2418. https://doi.org/10.1002/2016WR019638
Van Vliet, M. T. H., Wiberg, D., Leduc, S. y Riahi, K. (2016). Power-generation system vulnerability and adaptation to changes in climate and water resources. Nature Climate Change, 6(4), 375-380. https://doi.org/10.1038/nclimate2903
World Commission on Dams. (2000). Dams and Development: A New Framework for Decision-Making. Earthscan. https://www.unep.org/resources/report/dams-and-development-new-framework-decision-making
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. y Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77(1), 161-170. https://doi.org/10.1007/s00027-014-0377-0
Zorrilla Marcos, Y., Solorzano Poma, J. E., Javier Cabana, L. T., Panana Holgado, E. C., Minaya Huerta, D., y Coral Jamanca, J. C. (2024). Generación de caudales medios mensuales mediante el modelo Gr2m para el análisis de tendencia. Universidad, Ciencia y Tecnología, 28(124), 26-36. https://ve.scielo.org/pdf/uct/v28n124/2542-3401-uct-28-124-26.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Universidad & ciencia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


















