Effect of magnetic treatment of diesel on exhaust emissions of agricultural tractors

Authors

DOI:

https://doi.org/10.5281/zenodo.16877993

Keywords:

diesel, environment, greenhouse gases, magnetic treatment

Abstract

Introduction: This study analyzed the exhaust gas emissions from three tractors belonging to the agricultural vehicle fleet in Banes, with the aim of evaluating the impact of magnetic treatment of diesel fuel using NOVAMAG®01 magnetic technology. Objective: To assess the reduction of greenhouse gas emissions in tractor exhaust as a result of applying magnetic treatment to the fuel. Methodo: Exhaust gas composition was measured in three agricultural tractors using a Testo 350 combustion gas analyzer. Measurements were conducted twice in 2022 and once in 2024 before and after the installation of the magnetic technology. The measured parameters included the concentrations of carbon monoxide (CO), nitrogen oxides (NOx), and carbon dioxide (CO₂) generated from diesel combustion, as well as the exhaust gas outlet temperature, all under engine idle conditions. The first measurement was performed without fuel treatment, while the subsequent measurements were taken following the installation of the magnetic system, with the third measurement conducted one year later. Results: The evaluation of the data indicates a significant reduction in exhaust gas emissions across all three engines. Conclusion: The application of magnetic treatment to diesel fuel in the experimental tractors contributes to a decrease in the emission of pollutants (CO, NOx, and CO₂) resulting from combustion. This suggests a potentially viable approach for enhancing environmental sustainability in agricultural settings.

Downloads

Download data is not yet available.

References

Ağbulut, Ü. y Sarıdemir, S. (2021). A general view to converting fossil fuels to cleaner energy source by adding nanoparticles. International Journal of Ambient Energy, 42(13), 1569-1574.

Al-Khaledy, A. A. J. (2008). High performance and low pollutant emissions from a treated diesel fuel using a magnetic field. Al-Qadisiya Journal for Engineering Sciences, 1(2), 211-224.

Arias, G. R., Berenguer, U. M., Vázquez, N. J. A., Silveira, F. Y. y Alfaro, R. C. E. (2018). Disminución de las emisiones de monóxido de carbono con el tratamiento magnético del combustible. Centro Azúcar, 45(1), 21-31.

Arias, G. R., Falcón, H. J., Campos, S. M., Silveira, F. Y. y López, G. Ó. (2018). Efecto del tratamiento magnético en el comportamiento reológico del diésel. Revista Tecnología Química, 38(2), 412-427.

Arias, G. R., Silveira, F. Y., Campos, S. M. y Falcón, H. J. (2018). Efecto de un campo magnético estático en la tensión superficial del diésel y su atomización. Revista Iberoamericana de Ingeniería Mecánica, 22(1), 9-21.

Attar, A., Arulprakasajothi, M., Vasulkar, D., Gorde, N., Kharat, S. y Kulkarni, S. (2020). Investigation of impact of the magnetic field through Halbach array on hydrocarbon fuel. International Journal of Ambient Energy, 43(1), 1-6.

Bhurat, S. S., Sharma, H., Jha, A. K., Dixit, K. K., Shukla, P. y Kunwer, R. (2018). Magnetization of diesel fuel for compression ignition engine to enhance efficiency and emissions. International Journal of Applied Engineering Research, 13(6), 341-347.

Chandrasekaran, M., Prakash, K., Prakash, S. y Ravikumar, M. (2020). Influence on performance and emission characteristics of diesel engine by introducing medium strength magnetic field in fuel and air lines. MS&E, 764(1), 12-32.

Cogollos, J. B., Vega, J. R. F., Medina, A. S. y Morales, G. B. C. (2000). Influencia del tratamiento magnetico en los parametros de salida del motor D-65. Centro Azúcar, 27(1), 19-25.

Du, E., Tang, H., Huang, K. y Tao, R. (2011). Reducing the viscosity of diesel fuel with electrorheological effect. Journal of Intelligent Material Systems and Structures, 22(15), 1713-1716.

Elamin, A. A., Ezeldin, M., Masaad, A. M. y Suleman, N. M. (2015). Effect of Magnetic Field on Some Physical Characteristics and Cetane Number of Diesel Fuel. American Journal of Applied Chemistry, 3(6), 212-216.

Faris, A. S., Al-Naseri, S. K., Jamal, N., Isse, R., Abed, M., Fouad, Z., Kazim, A., Reheem, N., Chaloob, A. y Mohammad, H. (2012). Effects of Magnetic Field on Fuel Consumption and Exhaust Emissions in Two-Stroke Engine. Energy Procedia, 18, 327-338.

Gilart, R. A., Ungaro, M., Rodríguez, C., Hernández, J., Sofia, M. y Verdecia, D. (2020). Performance and exhaust gases of a diesel engine using different magnetic treatments of the fuel. Journal of Mechanical Engineering and Sciences, 14(1), 6285-6294.

Gilart, R. A., Verdecia, D. d. l. M. D., Ortiz, C. O., García, C. E. A. y Hernández, J. F. F. (2021). Mathematical modeling of the working temperatures of a diesel engine coupled to a generator and powered by a diesel-Jatropha oil blend. Revista cubana de ingeniería, 12(2), 283-298.

Guo, H., Liu, Z., Chen, Y. y Yao, R. (1994). A study of magnetic effects on the physicochemical properties of individual hydrocarbons. Logistical Engineering College, Chongqing, 40(2), 216-220.

Jing, J., Shi, W., Wang, Q. y Zhang, B. (2019). Viscosity-reduction mechanism of waxy crude oil in low-intensity magnetic field. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(3), 1-14.

Johnsson, F., Kjärstad;, J. y Rootzén, J. (2019). The threat to climate change mitigation posed by the abundance of fossil fuels. Climate Policy, 12(1), 258-274.

Kartik, Y., Raja, R. y Mithun, S. (2019). Experimental Investigation on the Effect of Fuel Magnetization for Improvement of Diesel Engine's Efficiency. SASTech-Technical Journal of RUAS, 18(1), 9-12.

Loskutova, Y. V. y Yudina, N. (2003). Effect of constant magnetic field on the rheological properties of high-paraffinicity oils. Colloid Journal, 65(4), 469-474.

Musina, N. y Maryutina, T. (2016). Application of magnetic treatment to changing the composition and physicochemical properties of crude oil and petroleum products. Journal of analytical chemistry, 71(1), 27-34.

Niaki, S. R. A., Zadeh, F. G., Niaki, S. B. A., Mouallem, J. y Mahdavi, S. (2020). Experimental investigation of effects of magnetic field on performance, combustion, and emission characteristics of a spark ignition engine. Environmental Progress & Sustainable Energy, 39(2), 13-27.

Nufus, T., Lestari, S., Ulfiana, A. y Manawan, M. (2020). Magnetization of Biodiesel (Cooking Oil Waste) to Temperature and Pressure Combustion in Diesel Engine. IOP Conference Series: Materials Science and Engineering,

Perdana, D., Yuliati, L., Hamidi, N. y Wardana, I. (2020). The Role of Magnetic Field Orientation in Vegetable Oil Premixed Combustion. Journal of Combustion, 20(3), 1-11.

Pivovarova, N. (2019). Use of wave effect in processing of the hydrocarbonic raw material. Petroleum Chemistry, 59(6), 559-569.

Pivovarova, N. A. (2004). Naturaleza de la influencia de un campo magnético constante sobre los sistemas dispersos petroliferos (en ruso). Refinación de petróleo y petroquímica. Logros científicos, tecnológicos y mejores prácticas (10), 20-26.

Taboada Zamora, A., Orlando Ernesto Rey Santos y Cardoso, O. C. G. (2021). Programa tarea vida en Cuba y su articulación con los Objetivos de Desarrollo Sostenible. Roca: Revista Científico-Educacional de la Provincia de Granma, 12(1), 1-15.

Ugare, V., Phobale, A. y Lutade, S. (2014). Performance of internal combustion (CI) engine under the influence of strong permanent magnetic field. Journal of Mechanical and Civil Engineering, 3(2), 11-17.

Verdecia, D. d. l. M. D., Gilart, R. A., Rodríguez, C. E. A., Font, Y. S., Gainza, R. O. M. y Fernández, K. d. l. C. S. (2019). Evaluation of a mixture of jatropha oil-diesel under the action of a magnetic field. Ingeniería Energética, 41(1), 1-10.

Wibowo, N., Utami, S., Riyanto, C. y Setiawan, A. (2020). Impact of Magnetic Field Strengthening on Combustion Performance of Low-Octane Fuel in Two-Stroke Engine. Jurnal Pendidikan Fisika Indonesia, 16(1), 57-62.

Published

2025-08-18

How to Cite

Maceo Fernández, E., Paredes Pupo, R. V., Arias Gilart, R., & Hidalgo Peña, Y. (2025). Effect of magnetic treatment of diesel on exhaust emissions of agricultural tractors. Universidad & Ciencia, 14(2), e8899. https://doi.org/10.5281/zenodo.16877993