Chemical characterization and in vitro antioxidant activity of hydroethanolic leaf extracts of Pontederia crassipes Mart

Authors

DOI:

https://doi.org/10.5281/zenodo.17916301

Keywords:

anthraquinones, aquatic plant, flavonoids, phenols

Abstract

Introduction: Pontederia crassipes Mart. is an invasive, damaging, and transformative aquatic plant found in artificial freshwater lagoons in Ciego de Ávila, Cuba. Despite studies demonstrating the benefits it provides to humans, there are no references to its use for a specific purpose in Cuba. Objective: to determine the ideal temperature for obtaining hydroethanolic leaf extracts of P. crassipes (emergent macrophyte), in vitro, with higher yield of phenols compounds, flavonoids, anthraquinones and antioxidant activity. Method: the extracts were obtained at different temperatures (27°C, 40°C, 60°C, and 80°C). Ethanol at 90% (v:v) was used as solvent for a solid-liquid ratio of 1:30 (m:v). Results: leaf extracts did not show significant differences in yield (p= 0.5903) and anthraquinone concentration (p= 0.24). The highest concentration of phenols was obtained in extracts at 60°C (10.04 mg g-1), with no significant differences from the other temperatures. The highest concentration of flavonoids and antioxidant activity was obtained in extracts at 60°C (7.40 mg g-1 and 118.57 µg mL-1) and 80°C (7.38 mg g-1 and 117.12 µg mL-1), respectively. These results differ from those obtained in P. crassipes, with grown in La Turbina lagoon. Conclusion: 60°C was selected as the ideal temperature for obtaining hydroethanolic leaf extracts of P. crassipes. P. crassipes extracts have potential as antioxidants for the pharmaceutical, agricultural and cosmetic industries. Systematic studies are needed using P. crassipes specimens obtained from various ecosystems.

Downloads

Download data is not yet available.

References

Balasundram, N., Sundram, K. y Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry, 99, 191-203.

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200.

Boudjelas, S., Browne, M., De Poorter, M. y Lowe, S. (2000). 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database. 12 p.

García Beltrán, J.A., Bécquer, E.R., Gómez Hechavarrı́a, J.L. y González Torres, L.R. (eds). (2024). Catálogo de las Plantas de Cuba. Planta! – Plantlife Conservation Society, Vancouver. https://doi.org/10.70925/cat.2024_203

Gurr, S. J., McPherson, M. J. y Bowles, D. J. (1992). Molecular plant pathology: a practical approach. Ed. Oxford: IRL Press.

Han, Y. S., Van der H., R., y Verpoorte, R. (2001). Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell, Tissue and Organ Culture, 67, 201-220.

Hasnat, H., Riti, S. J., Shompa, S. A., Alam, S., Islam, Mh., Kabir, F., Khan, Md. S., Shao, Ch., Zeng, Ch., Wang, Sh., Geng, P. y Al Mamun, A. (2024). Unveiling the Therapeutic Potentials of Water Hyacinth (Eichhornia crassipes (Mart.) Solms) Flower against Oxidative Stress, Inflammation and Depressive Disorders: GC-MS/MS, In Vitro, In Vivo and In Silico Approaches. Chemistry & Biodiversity, e202401268. https://doi.org/10.1002/cbdv.202401268

Hernández Fernández, L., Linares Rivero, C., Quiñones Galvez, Y., Lorenzo Feijoo. J.C., Acosta, Y. y González de Zayas, R. (2024). Promising organic compounds in invasive aquatic plants identified in freshwater lagoons in Cuba. Bionatura journal, 1(3), 15. https://doi.org/10.70099/BJ/2024.01.03.15

Kim, D. O., Chun, O. K., Kim, Y. J., Moon, H.-Y. y Lee, C. Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of agricultural and food chemistry, 51, 6509-6515.

Lefebvre, T., Destandau, E. y Lesellier, E. (2021). Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography A, 1635, 461770.

López Medina, E. N., Álvarez, R., Tellez, A., Aguayo, J. y Tovar, X. (2022). Análisis químico-proximal, fitoquímico y potencial bacteriostático de Eichhornia crassipes. Biotecnia, 24, 36-44.

Méndez Rodríguez, D., Molina Pérez, E., Spengler Salabarri, I., Escalona Arranz, J. C., Cos, P. (2019). Chemical composition and antioxidant activity of Coccoloba cowellii Britton. Revista Cubana de Química, 31, 15 pp.

Noufal, K. P., Rajesh, B. y Nair, S. S. (2023). Antioxidant and cytotoxic effects of the methanolic extract of Eichhornia crassipes petioles upon mg-63 cell lines: An in vitro study. Cureus, 15(5), e38425. https://doi.og/10.7759/cureus.38425

Noufal, K. P., Rajesh, B., y Nair, S. S. (2022). Antiproliferative effects of the methanolic petiole extract of Eichhornia crassipes against sloan kettering melanoma 5 cell Line: an in vitro study. Cureus, 14(10), e30554. https://doi.og/10.7759/cureus.30554

Oksanen, J., Kindt, R. y O’Hara. (2005). Community ecology package. Community ecology package. The vegan Package, version 1.6-10, 88 pp.

Oviedo, R. y González Oliva, L. (2015). Lista nacional de plantas invasoras y potencialmente invasoras en la República de Cuba–2015. Bissea, 9, 1-88.

Powthong, P. y Suntornthiticharoen, P. (2023). Comparative analysis of antioxidant, antimicrobial, and tyrosinase inhibitory activities of Centella asiatica (l.) Urb and Eichhornia crassipes (mart.) Solms. Journal of medical pharmaceutical and allied sciences, 12, 5931-5938.

Rabiepour, A., Babakhani, A. y Zakipour Rahimabadi, E. (2024). Effect of extraction methods on the antioxidant properties of water hyacinth, Eichhornia crassipes. Caspian Journal of Environmental Sciences, 23(1), 97-115.

Rodrigues de Queiroz, A., Hines, C., Brown, J., Sahay, S., Vijayan, J., Stone, J.M., Bickford, N., Wuellner, M., Glowacka, K. y Buan, N.R. (2023). The effects of exogenously applied antioxidants on plant growth and resilience. Phytochemistry Reviews, 22, 407-447.

Schulte, U., El Shagi, H. y Zenk, M. H. (1984). Optimization of 19 Rubiaceae species in cell culture for the production of anthraquinones. Plant Cell Reports, 3, 51-54.

Shukla, A., Jain, P. y Tripathi, R. (2024). Evaluation of Antioxidant Activity in Leaves of Eichhornia crassipes in Different Fractions of Hydroethanolic Extract. Article, 13, 1-11.

Sun, Y., Xie, X. y Jiang, C. J. (2024). Antioxidant Agriculture for Stress-Resilient Crop Production: Field Practice. Antioxidants, 13,164. https://doi.org/10.3390/antiox13020164

Tovar Jiménez, X., Favela Torres, E., Volke Sepúlveda, T. L., Escalante Espinosa, E., Díaz Ramírez, I. J., Córdova López, J. A. y Téllez Jurado, A. (2019). Influence of the geographical area and morphological part of the water hyacinth on its chemical composition. Ingeniería agrícola y biosistemas, 11, 39-52.

Tyagi, T. y Mala, A. (2015). Pharmaceutical potential of aquatic plant Pistia stratiotes (L.) and Eichhornia crassipes. Journal of plant sciences, 3, 10-18.

Published

2025-11-15

How to Cite

Hernández Fernández, L., Campo Reyes, C. de la C., Capdesuñer Ruiz, Y. K., Rodríguez Montes de Oca, L., & Pérez Gómez, L. (2025). Chemical characterization and in vitro antioxidant activity of hydroethanolic leaf extracts of Pontederia crassipes Mart. Universidad & Ciencia, 14(3), e8798. https://doi.org/10.5281/zenodo.17916301