Análisis estructural de un poste de luminaria de 12 m afectado por vientos huracanados

Autores/as

DOI:

https://doi.org/10.5281/zenodo.11200912

Palabras clave:

análisis estructural, dinámica de fluidos computacional, estructura metálica

Resumen

Objetivo: Realizar el análisis estructural del poste de 12 m diseñado y fabricado en la Empresa Mecánica Bayamo (EMBA). Método: Se empleó la Dinámica de Fluidos Computacional (CFD) para evaluar el efecto de las cargas generadas por el viento de un huracán categoría 3 según la escala Saffir-Simpson. Considerando dicho efecto, así como las cargas permanentes se realizaros estudios estáticos estructurales para determinar las tensiones y desplazamientos de la estructura. Resultados: Las tensiones a evaluar fueron las de von Mises las cuales dieron un valor máximo de 156,4 MPa y un desplazamiento en la digresión del viento de 210,6 mm. Conclusión: De acuerdo a las máximas tensiones el factor de seguridad mínimo obtenido fue de 1,2 lo que demuestra que las deformaciones ocasionadas para las condiciones del estudio, no serán permanentes, mientras que los desplazamientos se consideran aceptable dada la magnitud de las cargas y la altura del poste.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Apsley, D. D. (2024). CFD simulation of tidal-stream turbines in a compact array. Renewable Energy, 224, 120133. https://doi.org/https://doi.org/10.1016/j.renene.2024.120133

Avila Alonso, D., Baetens, J. M., Cardenas, R. y Baets, B. de (2019). The impact of hurricanes on the oceanographic conditions in the Exclusive Economic Zone of Cuba. Remote Sensing of Environment, 233, 111339. https://doi.org/https://doi.org/10.1016/j.rse.2019.111339

Barrera, E. F., Aguirre, F. A., Vargas, S. y Martínez, E. D. (2018). Influencia del Y Plus en el Valor del Esfuerzo Cortante de Pared a través Simulaciones empleando Dinámica Computacional de Fluidos. Información tecnológica, 29(4), 291-302. https://doi.org/http://dx.doi.org/10.4067/S0718-07642018000400291

British Standards Institution. (2019). BS EN 10025-2:2019 Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-alloy structural steels. In (pp. 44). London: BSI.

Camelo, J. y Mayo, T. (2021). The lasting impacts of the Saffir-Simpson Hurricane Wind Scale on storm surge risk communication: The need for multidisciplinary research in addressing a multidisciplinary challenge. Weather and Climate Extremes, 33, 100335. https://doi.org/https://doi.org/10.1016/j.wace.2021.100335

Coll, P. y Pérez, A. (2021). Climatología de los ciclones tropicales que tocaron tierra en Cuba entre 1980 y 2019. Revista Cubana de Meteorología, 27(4), 1-11. https://cu-id.com/2377/v27n4e06

Geng, F., Suiker, A. S. J., Rezaeiha, A., Montazeri, H. y Blocken, B. (2023). A computational framework for the lifetime prediction of vertical-axis wind turbines: CFD simulations and high-cycle fatigue modeling. International Journal of Solids and Structures, 284, 112504. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2023.112504

González, C. M. y Ramos, L. E. (2019). Cronología de las tormentas tropicales y huracanes que han afectado a La Habana. Revista Cubana de Meteorología, 25(3), 469-480. http://opn.to/a/TIUtR

Kantha, L. (2013). Classification of hurricanes: Lessons from Katrina, Ike, Irene, Isaac and Sandy. Ocean Engineering, 70, 124-128. https://doi.org/https://doi.org/10.1016/j.oceaneng.2013.06.007

Li, Y., Yang, S., Feng, F. y Tagawa, K. (2023). A review on numerical simulation based on CFD technology of aerodynamic characteristics of straight-bladed vertical axis wind turbines. Energy Reports, 9, 4360-4379. https://doi.org/https://doi.org/10.1016/j.egyr.2023.03.082

Martín, P., Fernández, I. y Parnás, V. E. (2019). Estudio comparativo de normas para el análisis dinámico de una torre autosoportada bajo carga de viento. Informes de la Construcción, 70(552), 1-11. https://doi.org/https://doi.org/10.3989/ic.15.021

Mengistu, M. T., Orlando, A. y Repetto, M. P. (2023). Wind and structural response monitoring of a lighting pole for the study of downburst effects on structures. Journal of Wind Engineering and Industrial Aerodynamics, 240, 105447. https://doi.org/https://doi.org/10.1016/j.jweia.2023.105447

Montero, O. P. y Batista, C. M. (2020). Social perception of coastal risk in the face of hurricanes in the southeastern region of Cuba. Ocean & Coastal Management, 184, 105010. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2019.105010

Mott, R. L. (2006). Diseño de elementos de máquinas (4ta ed.). Pearson Educación.

Pineda, G. V., Cepeda, J. L. y López, E. F. (2023). Análisis de convergencia de malla en simulación computacional de prueba de choque en asiento de autobús. Universidad y Sociedad, 15(S2), 185-191. https://rus.ucf.edu.cu/index.php/rus/article/view/3879

Tong, H., Halilaj, E. y Zhang, Y. J. (2024). HybridOctree_Hex: Hybrid octree-based adaptive all-hexahedral mesh generation with Jacobian control. Journal of Computational Science, 78, 102278. https://doi.org/https://doi.org/10.1016/j.jocs.2024.102278

Wijesooriya, K., Mohotti, D., Lee, C.-K. y Mendis, P. (2023). A technical review of computational fluid dynamics (CFD) applications on wind design of tall buildings and structures: Past, present and future. Journal of Building Engineering, 74, 106828. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106828

Publicado

25-05-2024

Cómo citar

Ramos Botello, Y. M., & Arias Hidalgo, R. M. (2024). Análisis estructural de un poste de luminaria de 12 m afectado por vientos huracanados. Universidad & Ciencia, 13(2), 234–247. https://doi.org/10.5281/zenodo.11200912

Número

Sección

Artículos Originales